THE IMPACT OF GLOBAL LIQUIDITY ON MACROECONOMIC AND FINANCIAL VARIABLES OF SELECTED SOUTHEAST ASIAN COUNTRIES: A PANEL VECTOR AUTOREGRESSION METHOD

Mahjus Ekananda
| Abstract views: 0 | views: 0

Abstract

The level of financial openness in developed and developing countries in Southeast Asia tends to increase in line with the loosening of foreign exchange regulations and international capital flows. Capital inflows to developing countries in selected Southeast Asia (Indonesia, Malaysia, the Philippines, and Singapore) have shown an increasing trend relative to GDP since the end of the Asian crisis. The awareness of economic actors and policymakers in the Association of Southeast Asian Nations (ASEAN) countries to the vulnerability of domestic economic conditions to fluctuations in global liquidity is also increasing. We developed a method that considers the financial heterogeneity of selected Southeast Asian (SEA) countries. Our research analyzes the response of the stock price index, inflation, consumer price index, and GDP in selected SEA countries due to disturbances from global variables such as VOX, world GDP, and world liquidity. This article applies the Panel Vector Autoregression model because of the dynamics and endogeneity between variables. The panel data consists of selected SEA countries from 2003 to 2019. The results show that the shock on the VOX variable, world GDP, and world liquidity affects inflation and GDP in selected SEA. The Governments in selected SEA countries must pay attention to changes in these variables that will affect GDP and inflation in selected SEA. Trade sources and support for production input factors are needed to keep GDP and inflation in selected SEA under control.

Keywords: panel vector autoregression, global liquidity, impulse response function,cholesky decomposition

Abstrak

Tingkat keterbukaan keuangan di negara-negara maju dan berkembang di Asia Tenggara cenderung meningkat sejalan dengan melonggarnya peraturan devisa dan arus modal internasional. Aliran modal masuk ke negara-negara berkembang di Asia Tenggara (Indonesia, Malaysia, Filipina, dan Singapura) telah menunjukkan tren yang meningkat relatif terhadap PDB sejak berakhirnya krisis Asia. Sejalan dengan itu, kesadaran para pelaku ekonomi dan pembuat kebijakan di beberapa negara (Association of Southeast Asian Nations) ASEAN terhadap kerentanan kondisi ekonomi domestik terhadap fluktuasi likuiditas global juga semakin meningkat. Kami membangun metode yang mempertimbangkan keberagaman keuangan beberapa negara Asia Tenggara (SEA). Penelitian kami menganalisis response Indeks Harga Saham, inflasi, indeks harga konsumen dan GDP di beberapa negara SEA akibat gangguan dari variabel global seperti VOX, GDP dunia dan likuiditas dunia. Artikel ini menerapkan model PVAR (Panel Vector Autoregression) karena dinamika dan hubungan endogenitas antar variabel. Data panel terdiri dari beberapa negara Asia Tenggara dari tahun 2003 hingga 2019. Hasil penelitian menunjukkan bahwa shock pada variabel VOX, GDP dunia, dan likuiditas dunia memengaruhi inflasi dan GDP di beberapa negara SEA. Implikasi penelitian sangat relevan dimana terjadi perubahan yang sangat cepat mengenai likuiditas global dan VOX saat ini. Pemerintah di beberapa negara SEA harus memerhatikan perubahan pada variabel-variabel ini yang akan memengaruhi GDP dan Inflasi di beberapa negara SEA. Sumber-sumber perdagangan dan dukungan faktor input produksi sangat diperlukan untuk mempertahankan GDP dan inflasi di beberapa negara Asia Tenggara tetap terjaga.

Kata kunci: panel vector autoregression, global liquidity, impulse response function, cholesky decomposition

Keywords

panel vector autoregression; global liquidity; impulse response function; cholesky decomposition

Full Text:

PDF

References

Books:

Greene, W.H. (2018). Econometric analysis (8th edition). Stern School of Business, New York University: Pearson, ISBN: 0134461363, 9780134461366.

Journal and Working Paper:

Abeygunawardana, K., Amarasekara, C., & Tilakaratne, C.D. (2017). Macroeconomic effects of monetary policy shocks: Evidence from Sri Lanka. South Asia Economic Journal, 18(1), 21-38. https://doi.org/10.1177/1391561416673507.

Aizenman, J., Chinn, M.D., & Ito, H. (2008). Assessing the emerging global financial architecture: Measuring the trilemma’s configurations over time (No. w14533). National Bureau of Economic Research, http://www.nber.org/papers/w14533.pdf.

Arner, D.W. & Schou-Zibell, L. (2011). Asian regulatory responses to the global financial crisis. Global Journal of Emerging Market Economies, 3(1), 135-169. https://doi.org/10.1177/097491011000300105.

Bekaert, G., Hoerova, M., & Lo Duca, M. (2013). Risk, uncertainty and monetary policy. Journal of Monetary Economics, 60(7), 771-788. DOI: 10.1016/j.jmoneco.2013.06.003.

Belke, A., Orth, W., & Setzer, R. (2010). Liquidity and the dynamic pattern of asset price adjustment: A global view. Journal of Banking & Finance, 34(8), 1933-1945. https://doi.org/10.1016/j.jbankfin.2009.12.012.

Brana, S., Djigbenou, M.L., & Prat, S. (2012). Global excess liquidity and asset prices in emerging countries: A PVAR approach. Emerging Markets Review, 13(3), 256-267. https://hal.archives ouvertes.fr/hal-00740102.

Bressan, S. & Weissensteiner, A. (2021). International review of financial analysis The financial conglomerate discount: Insights from stock return skewness. International Review of Financial Analysis, 74(February), 101662. https://doi.org/10.1016/j.irfa.2021.101662.

Brunnermeier, M.K. & Pedersen, L.H. (2009). Market liquidity and funding liquidity. Review of Financial studies, 22(6), 2201-2238. doi:10.1093/rfs/hhn098.

Carrière-Swallow, Y. & Céspedes, L.F. (2013). The impact of uncertainty shocks in emerging economies. Journal of International Economics, 90(2), 316-325. DOI: 10.1016/j.jinteco.2013.03.003.

Ciccarelli, M. & Mojon, B. (2010). Global inflation. The Review of Economics and Statistics, 92(3), 524-535. http://www.mitpressjournals. org/doi/pdf/10.1162/REST_a_00008.

Darius, R. & Radde, S. (August 1, 2010). Can global liquidity forecast asset prices? IMF Working Paper, No. 10/196, http://dx.doi.org/10.2139/ssrn.2142377.

Debata, B. & Mahakud, M. (2018). Interdependence between Monetary Policy and Stock Liquidity: A Panel VAR Approach. Margin: The Journal of Applied Economic Research, 12(4), 387-413. https://doi.org/10.1177/0973801018786270.

Ekananda, M. (2017a). Analysis of the macroeconomic impact towards the NPL national banking in Indonesia: The study of macro-economic shock using Vector Autoregression models. European Research Studies Journal. (XX(3A). http://ersj.eu/dmdocuments/2017-xx-3-a-26.pdf.

Ekananda, M. (2017b). Economic condition and banking industry performance in Indonesia. Buletin Ekonomi Moneter dan Perbankan, 20(1), 71-98.

Ekananda, M. & Suryanto, T. (2021). The influence of global financial liquidity on the Indonesian economy: Dynamic analysis with Threshold VAR. Economies, Switzerland, Volume 9, Issue 4 (December 2021), 32 articles, page: 162- 182 (20 pages). https://doi.org/10.3390/economies9040162.

Ermisoglu, E., Akcelik, Y., & Oduncu, A. & Taskin, T., (2014). Effects of additional monetary tightening on exchange rates, Eurasian Economic Review, Springer; Eurasia Business and Economics Society, vol. 4(1), pages 71-79, June. DOI: 10.1007/s40822-014-0004-3.

Frenkel, J.A. & Razin, A. (1987). The Mundell Fleming model a quarter century later: A unified exposition. Staff Papers-International Monetary Fund, 567-620.

Goyal, A. (2013). Assessing changes in the global financial architecture from an emerging market perspective. Foreign Trade Review. 48(4), 461-480. https://doi.org/10.1177/0015732513504711.

Kiyota, K., (2022). The COVID-19 pandemic and the world trade network. Journal of Asian Economics, 78(C). DOI: 10.1016/j.asieco.2021.101419.

Mahdi, I.B.S. & Abbes, B.M. (2018). Relationship between capital, risk and liquidity: a comparative study between Islamic and conventional banks in MENA region. Research in International Business and Finance. Volume 45, October 2018, Pages 588-596. http://dx.doi.org/10.1016/j.ribaf.2017.07.113.

Makun, K., & Jayaraman, T.K. (2021). COVID- 19 impact on remittances and economic growth in three transitional countries in ASEAN: evidence from nonlinear analysis, Economics Bulletin, AccessEcon, vol. 41(3), pages 1566-1578. DOI: 10.22437/ppd.v10i1.15476.

Matsumoto, A. (2011). Global liquidity: Availability of funds for safe and risky assets (June 2011). IMF Working Paper, No. 11/136, SSRN: https://ssrn.com/abstract=1864439.

Mitra, P.K. (2010). The impact of global financial crisis and policy responses: The Caucasus, Central Asia and Mongolia. Global Journal of Emerging Market Economies, 2(2), 189-230, https://doi.org/10.1177/097491011000200206.

Prasad, A., Bakhshi, P., & Seetharaman, A. (2022). The impact of the U.S. macroeconomic variables on the CBOE VIX Index. Journal of Risk and Financial Management, 15(3), 1-25, https://doi.org/10.3390/jrfm15030126.

Raghavan, M., & Devadason, E.S., (2020). How Resilient Is ASEAN-5 to Trade Shocks? A Comparison of Regional and Global Shocks, Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 12(1), pages 93-115, January. DOI: 10.1177/0974910120906239.

Rishabh, K. & Sharma, S. (2015). Global liquidity, financialization and commodity price inflation. Journal of International Commerce, Economics and Policy (JICEP), 6(02), 1-40. DOI: 10.1142/S179399331550012X.

Samsi, S.M., Yusof, Z., & Cheong, K. (2018). The effect of global financial crisis on ASEAN growth: Evidence from stock market analysis, DLSU Business & Economics Review, 28(1), 1–33. https://www.dlsu.edu.ph/wp-content/uploads/2019/03/1samsi-0922.pdf.

Schneider, F. (2022). New COVID-related results for estimating the shadow economy in the global economy in 2021 and 2022. International Economics and Economic Policy, 19(2), 299-313, DOI: 10.1007/s10368-022-00537-6.

Sousa, J. M. & Zaghini, A. (2007). Global monetary policy shocks in the G5: a PVAR approach. Journal of International Financial Markets, Institutions and Money, 17(5), 403-419. DOI:10.1016/j.intfin.2006.03.001.

Thanh, L.T., & Lan, B.T.H, (2017). Examining Asymmetric Volatility and Spillovers of ASEAN-6 Stock Markets in Financial Crisis, International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 8(1), pages 16-25, January. DOI: 10.5430/ijfr.v8n1p16.

Tunggal, N.Z., Kadir, S.U.S., & Liew, V.S. (2018). Panel Analysis of Monetary Model of ASEAN-5 Exchange Rates. International Business Research, 11(11), 1-7. DOI:10.5539/ibr.v11n11p1.

Report:

Badan Pusat Statistik, (2021). Produk Domestik Regional Bruto Kabupaten/Kota di Indonesia 2017-2021, Publication Number 07100.2203, BPS-Statistics Indonesia.

Bloomberg, (2021), Cboe Global Markets Inc Stock Price Quote - Bloomberg, Diambil tanggal 3 Juni 2020 dari https: //www.bloomberg.com/quote/CBOE:LN?leadSource=uverify%20wall.

IMF. (2022). World Economics Outlook Databases. Diperoleh tanggal 21 Mei 2020, dari https://www.imf.org/en/Publications/SPROLLs/world-economic-outlook databases#sort=%40imfdate%20descending.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks